
NAVAL
POSTGRADUATE

SCHOOL
MONTEREY, CALIFORNIA

THESIS

Approved for public release. Distribution is unlimited.

EXECUTION OF SYSTEMS INTEGRATION
PRINCIPLES DURING SYSTEMS ENGINEERING

DESIGN

by

John K. Logan Jr.

September 2016

Thesis Advisor: Eugene Paulo
Second Reader: Gary Parker

THIS PAGE INTENTIONALLY LEFT BLANK

i

REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork
Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
September 2016

3. REPORT TYPE AND DATES COVERED
Master’s thesis

4. TITLE AND SUBTITLE
EXECUTION OF SYSTEMS INTEGRATION PRINCIPLES DURING
SYSTEMS ENGINEERING DESIGN

5. FUNDING NUMBERS

6. AUTHOR(S) John K. Logan Jr.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Systems integration (SI) is an extensive task conducted as part of the bottoms-up systems engineering
(SE) lifecycle approach. Implementation of a newly developed system depends on successful
accomplishment of systems integration. Complexities of system design solutions are making SI success
more difficult to achieve; integration failures have become more common and tend to drive costly redesign
efforts. This research explores some of the integration failures and causes and proposes SE developmental
phase considerations regarding requirements, stakeholders, testing, and system boundaries. Additionally,
this thesis discusses use of systems architecture frameworks and models and the consistent use of model-
based systems engineering throughout development. Lastly, it proposes formal methods language for
improving models. This research describes how all of these solutions can facilitate identifying and
resolving common SI failures prior to the completion of system development. By doing so, the success of
the integration effort and the system as a whole is ensured.

14. SUBJECT TERMS
systems integration, integration failures, formal methods

15. NUMBER OF
PAGES

81
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release. Distribution is unlimited.

EXECUTION OF SYSTEMS INTEGRATION PRINCIPLES DURING SYSTEMS
ENGINEERING DESIGN

John K. Logan Jr.
Civilian, Department of the Navy

B.S., Southern Illinois University, 2001
M.S., Colorado Technical University, 2005

Submitted in partial fulfillment of the
Requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS ENGINEERING MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
September 2016

Approved by: Eugene Paulo, PhD
Thesis Advisor

Gary Parker
Second Reader

Ronald Giachetti, PhD
Chair, Department of Systems Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Systems integration (SI) is an extensive task conducted as part of the bottoms-up

systems engineering (SE) lifecycle approach. Implementation of a newly developed

system depends on successful accomplishment of systems integration. Complexities of

system design solutions are making SI success more difficult to achieve; integration

failures have become more common and tend to drive costly redesign efforts. This

research explores some of the integration failures and causes and proposes SE

developmental phase considerations regarding requirements, stakeholders, testing, and

system boundaries. Additionally, this thesis discusses use of systems architecture

frameworks and models and the consistent use of model-based systems engineering

throughout development. Lastly, it proposes formal methods language for improving

models. This research describes how all of these solutions can facilitate identifying and

resolving common SI failures prior to the completion of system development. By doing

so, the success of the integration effort and the system as a whole is ensured.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND AND OVERVIEW ...1
B. SYSTEMS INTEGRATION OVERVIEW ...1

1. Systems Integration Defined ...1
2. An Example of Systems integration ...2

C. THE SYSTEMS INTEGRATION PROBLEM3
D. SYSTEMS ENGINEERING OVERVIEW ...4

1. Systems Engineering Defined..4
2. Systems Engineering Development Lifecycle Explained4
3. Typical Phases within a Lifecycle ...5

E. SYSTEMS INTEGRATION EFFORTS WITHIN THE
LIFECYCLE ..5
1. SI Functions that Occur on the Right Side of the VEE

Model ...6
2. Need for Systems Integration on the Left Side of the VEE

Model ...6
F. PROPOSED METHODOLOGY ..7
G. RESEARCH QUESTIONS ...8
H. SUMMARY OF SYSTEMS INTEGRATION ..8

II. SYSTEM DEVELOPMENT AND EMPHASIS ON SYSTEMS
INTEGRATION ...9
A. INTRODUCTION..9
B. STAKEHOLDER/CUSTOMER/USER NEEDS ANALYSIS9

1. Who Are the Stakeholders and What are Needs?.......................9
2. Importance of Conducting a Needs Analysis.............................10
3. Impacts to Systems Integration ..11
4. Summary of Stakeholders and Needs Analysis11

C. SYSTEM BOUNDARIES AND INTERFACES12
1. Introduction ..12
2. System Interfaces ...12
3. Impacts to Systems Integration ..13
4. Summary of System Boundaries and Interfaces13

D. REQUIREMENTS DEVELOPMENT ..13
1. Introduction ..13
2. Importance of Traceability ...15
3. Importance of Using a Requirements Management Tool16

 viii

4. Full Coverage of Requirements Testing for Risk
Mitigation..16

5. Impacts to Systems Integration ..17
6. Summary of Requirements Development18

E. SYSTEMS INTEGRATION TEST DEVELOPMENT19
1. Introduction to Testing Development ..19
2. The Connection between Requirements Traceability and

Testing Development ...19
3. Summary of Systems Integration Test Development20

III. IMPROVING SYSTEMS INTEGRATION THROUGH ADVANCED
SOLUTIONS ..21
A. EMPLOYING A SYSTEMS ARCHITECTURE

FRAMEWORK ..21
1. Systems Architecture Defined ...21
2. Systems Architecture Ties to Systems Engineering21
3. Contributions to Systems Integration ..23
4. Summary of Systems Architecture ...25

B. UTILIZING MODEL-BASED SYSTEMS ENGINEERING26
1. Model-Based Systems Engineering Explained26
2. Contributions to Systems Integration ..27
3. Summary of Model-Based Systems Engineering28

IV. SOLUTION FOR ADDRESSING COMPLEX SYSTEMS
INTEGRATION PROJECTS ...31
A. UNIQUE SYSTEMS INTEGRATION CIRCUMSTANCES

THAT CAN BENEFIT FROM THE UTILIZATION OF
ADVANCED SOLUTIONS: ...31
1. Integration of New and Complex System Solutions with

Legacy Systems...31
2. External Factors that Impact System Requirements and

Design ..32
3. Summary of Circumstances Requiring Advanced

Solutions ..32
B. USING FORMAL METHODS TO ANALYZE AND DESIGN

SYSTEM INTERFACES ..33
1. What are Formal Methods? ..33
2. What is Lifecycle Modeling Language?33
3. Phased Approach for Implementation of Formal Methods35
4. Contributions to Systems Integration ..36

C. SUMMARY OF FORMAL METHODS ...37

 ix

V. SYSTEMS INTEGRATION CASE STUDIES ...39
A. SYSTEMS INTEGRATION CASE STUDIES FOR DOD

SYSTEMS ...39
1. System #1 – Key Stakeholder Left Out of Development39
2. System #2 – Reduced Stakeholder Involvement and Lack

of Legacy Systems Requirements Analysis40
3. System #3 – Failure to Analyze Software Interfaces and

Behaviors ..42
4. Other Integration Issues ..43

B. NON-DOD INTEGRATION FAILURE CASE STUDIES44
1. FBI Virtual Case File Project ...44
2. Ariane 5 ...45

C. SUMMARY OF CASE STUDIES AND SYSTEMS
INTEGRATION ISSUES ..45

VI. RECOMMENDATIONS AND CONCLUSION ...47
A. RECOMMENDATIONS ...47

1. Thorough Stakeholder Analysis Reduces Design Rework
During Systems Integration ..47

2. Requirements Traceability Improves Translation of
Stakeholder Needs to System Requirements to System
Design ..47

3. Utilization of a Systems Architecture Framework
Improves Systems Integration for Complex Systems48

4. Implementation of Model-Based Systems Engineering
Improves System Requirements, Design and Integration49

5. Incorporation of Formal Methods Patterns Enforces
Systems Integration in Design Specifications49

B. CONCLUSION ..50
C. OPPORTUNITIES FOR ADDITIONAL RESEARCH50

LIST OF REFERENCES ..53

INITIAL DISTRIBUTION LIST ...57

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. SI events. Source: SEBOK (2016). ..2

Figure 2. Example of Systems Integration for Aircraft Cockpit Electronics.
Source: Pickar (2015). ...3

Figure 3. VEE Process Model. Source: SEBOK (2016). ..5

Figure 4. System Lifecycle Requirements Traceability. Source: ITABoK
(2016). ..15

Figure 5. MBSE Requirements Traceability. Source: Giachetti (2015)....................17

Figure 6. Systems Architecture Views. Source DOD (2015b).22

Figure 7. CORE’s DODAF Version 2 Schema. Source: Vitech (2016).25

Figure 8. Requirements Inputs to Model-Based Systems Engineering. Source:
OMG (2016)...26

Figure 9. Class/Relationship Diagram. Source: Rodano and Giammarco
(2013). ..35

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. Benefits of Well-Written Requirements. Source: NASA SEH (2007).18

Table 2. Benefits of Using Model-Based Systems Engineering. Source:
INCOSE UK (2016). ..28

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF ACRONYMS AND ABBREVIATIONS.

AOA analysis of alternatives

CI configuration item

CM configuration management

DOD Department of Defense

DODAF Department of Defense Architecture Framework

DOORS Dynamic Object Oriented Requirements System

EMMI energy, matter, material wealth, information

EOL end of life

FM formal methods

GFI government furnished information

IOC initial operational capabilities

IOE intended operating environment

IPT integrated product team

LML lifecycle modeling language

MBSE model-based systems engineering

PM program manager

RFP request for proposal

SA systems architecture

SDLC systems engineering development life cycle

SDS Shipboard Data System

SE systems engineering

SEBOK Systems Engineering Book of Knowledge

SI systems integration

SLOC software lines of code

SOI system of interest

SOS system of systems

STIG security technical information guideline

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

EXECUTIVE SUMMARY

A design agent conducts Systems Integration (SI) efforts as a part of an overall

systems engineering process. SI execution occurs after all other system design efforts are

complete. During SI, component assembly occurs and functional, and interface, testing is

accomplished to build assemblies, subsystems and systems. Eventually the integration of

the new system into its intended operating environment occurs. For systems within a

system of systems (SOS) architecture, testing of functions and interfaces occurs once

more. Failures observed during SI are on the rise and threaten the success of

implementing the new system. In many cases, and due to its criticality, the new system

must be implemented and therefore endure costly redesigning and subsequent regression

testing. These failures influence both Department of Defense (DOD) and non-DOD

systems. Solutions exist to reduce the likelihood of these failures occurring by

discovering them early in development. This research explores the issues encountered

during the execution of SI, explores problematic systems engineering tasks executed

during development, and proposes solutions that can ensure SI success.

Systems integration is most concerned about testing functionality of objects and

interactions via interfaces between objects whether those objects reside within the same

assembly, subsystem, or system. Interfaces also connect objects that reside in different

systems.

Clean interfaces make a big difference in the error rate of the design.
Some have estimated that errors and rework, though affecting only a small
fraction of a design, may account for half the design cost. Worse yet,
errors due to vague or sloppy interfaces usually surface late, during
systems integration. Nastier to find, costlier to fix, impact the whole
system schedule. (Brooks 2010, 94)

This research makes several recommendations to design agents to improve the likelihood

of accomplishing systems integration successfully. First, this research proposes a more

detailed approach to the development of the system. Specifically, this means the manner

in which stakeholders are identified and engaged during development of the system,

considerations that must be made regarding system boundaries and interfaces, the

 xviii

importance of requirements development and traceability throughout development and

into testing activities, and the need for thorough testing development in support of SI.

Secondly, this research proposes the utilization of advanced solutions in

conjunction with existing systems engineering processes to include the creation of an

integrated system architecture (SA) via a framework and its associated models, utilization

of model-based systems engineering (MBSE) for analyzing potential requirements

changes, and the application of formal methods to enforce desirable patterns for

solidifying models.

Analysis of DOD and industry case studies in addition to errors encountered by

this researcher during DOD systems integration, revealed failures observed during the

conduct of systems integration. The root cause or causes to these failures are traceable to

inadequate systems engineering development efforts conducted prior to conducting SI.

The recommendations made in this thesis could have prevented the failures these systems

observed during SI. This thesis discusses integration failures observed by DOD and non-

DOD systems as, inadequate stakeholder analysis, incomplete problem space and design

solution, inadequate requirements traceability, lack of requirements traceability between

system and test requirements, and a lack of system boundaries awareness and external

interfaces.

In addition to implementing the systems engineering developmental

recommendations for improving SI success, this thesis recommends execution of

advanced solutions concurrently within the SE process phases. This thesis explores the

benefits of the initial execution of a systems architectural framework at system

conceptualization, the establishment of MBSE tools and its continued use throughout

development, and SI and the implementation of formal methods to further enforce

desirable patterns or requirements within the modeling language. This thesis documents

the benefits of using each solution and it is useful to achieving systems integration

success.

Complexities of system design solutions are making SI success more difficult to

achieve; integration failures have become more common and tend to drive costly redesign

efforts. To achieve success, strategies for addressing systems integration must change or

 xix

the observation of past failures. These failures can prevent a system from succeeding.

Maier and Rechtin (2009, 10) state, “If a system is to succeed, it must satisfy a useful

purpose, an affordable cost, for an acceptable period of time.”

References

Brooks, Frederick P. 2010. The Design of the Design, Essays from a Computer Scientist.

Boston, MA: Pearson Education.

Maier, Mark W., and Eberhardt Rechtin. 2009. The Art of Systems Architecting. Boca
Raton, FL: CRC Press.

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

xxi

ACKNOWLEDGMENTS

There are many individuals who I am thankful for assisting, mentoring and or

supporting me throughout this effort to research and author this thesis.

First, I thank my God for giving me the perseverance to endure this two-year

endeavor to write this thesis. Every “ah ha” moment originated from Him and sometimes

came from speaking with other individuals.

Second, I would like to thank my wife and two sons for understanding and

supporting me during the long nights and weekends spent working on this thesis rather

than spending time with them. The end has come and it feels great!

Third, I would like to thank Gene Paulo and Gary Parker for mentoring me with

the research, editing and defending of this thesis. A special thanks goes to Kristin

Giammarco for instructing and consulting me in formal methods and MBSE. I would like

to thank Barbara Berlitz and Noel Yucuis for assisting me with improving my writing and

grammar skills. I would also like to thank Wally Owen and Heather Hahn for their

logistical support and guidance in meeting the thesis deadlines.

Lastly, I would like to thank my NPS professors for instructing and preparing

me for writing this thesis. In many cases, some of you invested additional time to

assist me in understanding advanced principles. Thank you very much!

 xxii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

The purpose of this research is to explore the principles, considerations, decisions

and tasks related to systems integration (SI) that must occur during the early phases of

system development This thesis lists and describes some realized DOD program issues

associated with SI deficiencies and provide recommendations for implementing proven

principles, effective software application tools and emerging methods to utilize within the

SE process for ensuring physical SI success.

A. BACKGROUND AND OVERVIEW

This chapter explores what SI is, its relationship to systems engineering (SE),

systems architecture (SA) and as an integral part of the overall systems engineering

development lifecycle. Merriam-Webster Dictionary (2016) states, a “system” refers to,

“a group of related parts that move or work together” and the term “integration”, from

the action to “integrate” refers, “to combine (two or more things) to form or create

something” (2016). The next chapter goes into detail of what constitutes systems

integration and how it applies in the creation of a system.

B. SYSTEMS INTEGRATION OVERVIEW

1. Systems Integration Defined

Experts in their respective fields state definitions for SI. Jeff Grady (2010, 6)

defines SI as, “The art and science of facilitating the marketplace of ideas that connects

the many separate solutions into a system solution … a process that unifies the product

components and the process components into a whole.” Gary Langford (2012, 2) defines

SI as, “A method that facilitates outcomes that are beyond what an individual object can

do either individually or by a number of objects acting independently, that is, makes

things happen that would otherwise not happen.” In the words of this researcher, SI is the

process of combining objects together to accomplish a common goal or mission. Figure 1

provides a depiction of SI events. The events are hierarchical, in which a subsequent

event builds on the previous event. The combining of hardware and/or software-

 2

configured items (CI) creates an assembly which is tested at the assembly level;

assemblies are combined into a system and tested at the system level and finally the

system is installed and tested into its intended operating environment and testing the

completed system. Most designed systems involve to certain degree systems integration.

Figure 1. SI events. Source: SEBOK (2016).

2. An Example of Systems integration

Figure 2 is a visual depiction of a proposed systems integration flow for an

aircraft cockpit and electronics system. Observe how hardware components or objects are

integrated together to create a larger hardware assembly, possibly a subsystem. Testing

of software coding happens concurrently with the hardware integration. The combining

of hardware and software creates an assembly or subsystem. Additional testing occurs at

the subsystem and/or follow-on system level. The execution of final testing or user

acceptance testing occurs with the designed assemblies/subsystems/system is installed or

integrated into the intended operating environment, an aircraft cockpit. The intended

operating environment (IOE) is a location in which the user or for a weapons system the

warfighter will operate the system. This testing ensures all acceptable performance of the

 3

integrated system’s external interfaces, with the other systems in the operating

environment; all energy, matter, material wealth, and information (EMMI) exchanges are

occurring as designed. All aforementioned testing answers the question, “can the newly

integrated system effectively exchange EMMI with other systems hosted in the operating

environment?”

Figure 2. Example of Systems Integration for Aircraft Cockpit Electronics.
Source: Pickar (2015).

C. THE SYSTEMS INTEGRATION PROBLEM

DOD program managers must maintain weapon system operational readiness for

longer than planned lifecycles and with less funding. As these systems are being

operationally sustained for a longer periods, issues emerge that challenge a systems

engineering design team’s ability to successfully integrate new technology solutions with

existing legacy systems components utilizing integration principles that may have been

adequate for first-time integration of the legacy as a whole, but alone will not suffice

without significant risk to future system development. Those issues are hardware

 4

functions replaced by software functions, legacy hardware functions replaced by

advances in technology solutions, new software solutions containing more software lines

of code and emerging cyber security threats that drive changes to system requirements.

This thesis describes real life systems integration challenges and setbacks experienced as

a result of one or more of these issues listed. Additionally, this thesis prescribes proven

solutions that empower a design agent to address integration risks prior to obtaining a

mature system design. Observing any integration risks subsequent to achieving a mature

design will cause an integration failure and possibly system redesign.

D. SYSTEMS ENGINEERING OVERVIEW

1. Systems Engineering Defined

According to Systems Engineering Body of Knowledge (SEBOK), an online

professional wiki, systems engineering (SE) is defined as, “an interdisciplinary approach

and means to enable the full life cycle of successful systems, including problem

formulation, solution development and operational sustainment and use” (SEBOK 2016).

Another definition lectured by Langford (2015), “Systems Engineering is a discipline for

solving problems by analyzing risk and value propositions, through a structured process

that facilitates actions that account for available resources, lifecycle of the solution, and

the lifecycle of the need.”

2. Systems Engineering Development Lifecycle Explained

A full lifecycle is comprised of phases, each with its own overall specific purpose

and tasks performed by an integrated product team (IPT) of experts with a common goal

of successful design, development, test and deployment of a system. A lifecycle structure

consists of phases within a methodology or process model. There are many different

methodologies, each with its respective benefits and shortcomings. This thesis references

the VEE process model. Figure 3 depicts this process model.

 5

Figure 3. VEE Process Model. Source: SEBOK (2016).

3. Typical Phases within a Lifecycle

The VEE Process Model is only one of many different lifecycle process models;

each model has benefits and shortcomings respectively. Each process model is comprised

of phases, a logical separation of events within the process model usually separated by

customer reviews. The purpose of these reviews are for the design team to demonstrate

recent progress made on the development efforts for that system to the customer, to

obtain concurrence from the customer to commence the next phase within the process

model, and to discuss any design changes that had already been previously implemented.

E. SYSTEMS INTEGRATION EFFORTS WITHIN THE LIFECYCLE

Systems integration is a component of the systems engineering process
that unifies the product components and the process components into a
whole. It ensures that the hardware, software, and human system
components will interact to achieve the system purpose or satisfy the
customer's need. (Grady 2010, 6)

 6

Figure 3 depicts the execution of systems integration events on the right side of

the model during the bottoms-up phases. Those events include verification of

components, subsystems, and system; system validation, and finally commissioning of

the system or implementation into the IOE.

 The process of physically combining or integrating and testing objects

together occurs on the right side of the VEE process model. This thesis does not refute

this fact but emphasizes the importance of SI execution and planning to facilitate

successful integration and testing that occurs on the right side of the VEE. Otherwise, a

design agent finds him or herself re-designing components and/or interfaces while

concurrently testing the system. Figure 3 shows systems integration as a concurrent effort

along with verification and validation. These two events, within the lifecycle, occur prior

to production. This thesis presents evidence to support the stance that execution of SI

related tasks must occur early enough to ensure successful SI in the right side of the VEE

model.

1. SI Functions that Occur on the Right Side of the VEE Model

The right side of the VEE Process Model lists the systems integration activities or

physical systems integration that occurs after all hardware and software developed is

complete. Integration of CIs creates assemblies, subsystems and eventually the

functionality of the system verifies that the sum of the CIs operates as a whole system.

Physical systems integration of a system occurs on the right side of the VEE process

model (Grady 2010, 11). This thesis does not go into further description of what happens

during physical SI.

2. Need for Systems Integration on the Left Side of the VEE Model

SI events shown on the right side of the VEE model are of great importance to

ensuring successful SI. This process is a bottom up approach as indicated on the right

side of the VEE Model depicted in Figure 3. When issues occur during the conduct of

bottom up SI, these issues jeopardize successful implementation of the designed system.

This research focuses on the implementation of solutions on the left side or top down

 7

tasks of the VEE model prior to the execution of any physical SI. These solutions

improve bottom up SI success.

Two experts agree the scope of integration is not limited to the physical

integration process. Grady (2010, 11) states, “It appears we will have to do integration

work throughout the development period. The author believes this to be true.” He goes on

to share that physical integration efforts do not solely comprise the entire integration

effort. Intellectual integration activities occur during development and prior to the

physical integration activity (Grady 2010, 11). In Langford’s (2012, 19) book titled

Principles of Integration he states in Principle 5, “Integration is a primary, key activity,

not an afterthought considered as the result of development.” Both Grady and Langford

agree that the process starts during development, top-down phases approach and then

proceeds with physical SI during bottom up phases of the lifecycle. This thesis proposes,

in detail some of the SI top-down tasks that need to be conducted, by doing so will

increase the likelihood of systems integration success.

F. PROPOSED METHODOLOGY

The preceding paragraphs have introduced to the reader the concept of systems

engineering, its application via the use of a process model and the utilization of systems

integration in the latter phases of a process model. The purpose of this thesis is to outline

the need for systems integration efforts during the early phases of systems engineering

development. This thesis focuses on specific task accomplishment during top down

development. Later, it introduces implementation of solutions for these tasks. Lastly, this

thesis details SI failures via case studies and traces proposed solutions to the observed

failures. From a general standpoint, the proposed solutions for early SI are early design

via systems architectural modeling, programmatic considerations, development

considerations, and new practices.

 8

G. RESEARCH QUESTIONS

The proceeding chapters address the following research questions in detail:

Research Question #1

What are the tasks executed during system development that assist in revealing

issues prior to commencing SI?

Research Question #2

What are the systems engineering principles and tools that improve the likelihood

of completing SI successfully?

H. SUMMARY OF SYSTEMS INTEGRATION

This chapter introduced the concept of systems integration, its common

application during bottoms-up systems engineering phases, the problems with not

executing systems integration efforts early in system development in support of the

bottom up physical systems integration work and the challenges of integrating advanced

technology system solutions with legacy systems objects.

The next chapter will begin to detail systems integration and the importance of

executing early in the developmental phases within a systems engineering process model.

Lastly, Pickar (2015, 3) states the importance of SI, “SI interprets the overall

performance needs of a sponsor into technical performance specifications and ensures

that system requirements are met.” Systems integration depends on successful testing of

all system requirements.

 9

II. SYSTEM DEVELOPMENT AND EMPHASIS ON SYSTEMS
INTEGRATION

A. INTRODUCTION

The purpose of this chapter is to list and detail various aspects of systems

integration (SI) considerations and work scope that need to occur during the systems

engineering top-down development phases. That is, the developmental aspects of SI that

must be analyzed and actions taken to ensure the designed solution can be successfully

physically integrated the first time without the need for any systems redesign after

development has been completed. That redesign involves analysis of potential impacts to

other system components, and regression testing. Langford (2012, 4) identifies

integration failure as, “attempting to integrate two objects where one or a combination of

both requires an amount of rework that is more constrained by cost or time than starting

anew, the result is failure to integrate.” This thesis explores and proposes solutions for

avoiding these types of failures.

B. STAKEHOLDER/CUSTOMER/USER NEEDS ANALYSIS

1. Who Are the Stakeholders and What are Needs?

A stakeholder is any person, group of persons or an organization with an interest

in the system. A stakeholder is also any entity that influences the systems engineering:

development, design, test, production, implementation and sustainment efforts and any

associated business or policy decisions made by the integrated product team. Each

stakeholder has “wants” and “needs.” Each system requirement decomposes into multiple

lower level design requirements. Blanchard and Fabrycky (2011, 48) state, “It is essential

that one start off with a good understanding of the customer need and a definition of

system requirements.” Some examples of stakeholders are, project sponsor(s) or

customer, users, developers, testers, and policy makers. Identifying all applicable

stakeholders is the first step toward successful physical systems integration. Inadvertently

missing a stakeholder and his or her associated needs will result in an incomplete set of

system level requirements and any associated lower level design requirements. Missing

 10

requirements can lead to an inadequate system design. Unfortunately, discovery of these

inadequacies occur when attempting to accomplish integration.

A key stakeholder is an individual, group, or organization with the most influence

or impact to the success or failure of the system. Langford (2012, 231) states, “Key

stakeholders are those who represent the totality of the people who have various needs

associated with the product or service that is to be built by systems engineers.” Revisiting

the cockpit electronics, systems integration depiction shown and discussed in Chapter I

an example of a key stakeholder for that avionics electronics package is the group of

users that will operate the sustained system. If the users were not included as stakeholders

for designing the system then there is a greater chance the system will experience an

integration failure. Addressing any failure of this kind affects the program schedule. If

the impact is great, say in years then it affects the users operating the legacy system. This

system will eventually experience an upward trend in equipment failures.

2. Importance of Conducting a Needs Analysis

Capturing the stakeholder and especially the user needs is of critical importance to

understanding the entire problem space and to deriving a complete set of system level

user requirements for consideration into the system design. Inadvertently overlooking

users as key stakeholders or programmatically excluding them creates considerable risk

that the designed and sustained system does not meet a complete set of user needs/

requirements and system redesign is imminent. Failure to redesign the system to meet

user needs can eventually lead to the user changing the system to meet his or her mission

needs.

One of the biggest challenges … is the identification of the set of
stakeholders from whom requirements should be elicited. Customers and
eventual end‐users are relatively easy to identify, but regulatory agencies
and other interested parties that may reap the consequences of the system‐
of-interest should also be sought out and heard. Stakeholders can include
the interoperating systems and enabling systems themselves, as these will
usually impose constraints that need to be identified and considered.
(INCOSE 2010, 59)

 11

Stakeholder needs are the most important inputs into formulating a design

solution to a problem and addressing all needs. Each need translates into a system level

requirements that will trace downward into lower level subsystem and component

requirements: “Identifying the problem and accomplishing a needs analysis in a

satisfactory manner can best be realized through a team approach involving the customer,

the ultimate user, the prime contractor or producer and major suppliers” (Blanchard and

Fabrycky 2011, 58).

3. Impacts to Systems Integration

Langford (2012, 261) states, “A possible defect is missing a stakeholder of

consequence.” Failing to identify a key stakeholder or consciously deciding to exclude a

key stakeholder may cause dire consequences to the system design and create issues for

cost and schedule. Overlooking a stakeholder or even missing a single stakeholder need

affects the solution and creates deficiencies in the requirements.

Langford (2012, 260) suggests conducting a stakeholder analysis followed by the

creation of scenarios that require potential stakeholder interactions in an effort to identify

additional stakeholders that may have been overlooked during the initial analysis. A real

world example of the consequences of not conducting adequate stakeholder analysis is

included in the FBI Virtual Case File case studies.

4. Summary of Stakeholders and Needs Analysis

A decision by the customer (usually an individual or organization within the DOD

with the authority to award contracts) not to conduct a user needs analysis can ultimately

result in increased SI costs. An undiscovered or unknown set of user needs will result in a

“failure to integrate” (Langford 2010). This thesis later discusses systems that experience

SI failures due to an inadequate stakeholder analysis. Every stakeholder “need”

eventually traces to one or more system requirements (Blanchard and Fabrycky 2011,

58). Other stakeholders may include regulatory agencies and owners of interoperating

systems (INCOSE 2010). Finally, “integration is only as good as architecture captures

stakeholder requirements” (Langford 2012, 15). Architecture derives from lower level

requirements that support the system level requirements. Definitions of those system

 12

level requirements originate from all stakeholder requirements or needs obtained from

conducting a needs analysis.

C. SYSTEM BOUNDARIES AND INTERFACES

1. Introduction

Understanding and establishing all system boundaries during early development

ensures coordination of all system-level interfaces. This activity involves integrating the

new designed and tested system into its intended operating environment. That

environment can be one or more of the following engineering test bed (ETB), a training

facility or a tactical environment onboard a naval vessel, or aircraft. This is not an

exhaustive list of operating environments in which installation, testing, and sustainment

of the system occurs. Each operating environment comes with its own respective and

possibly unique set of considerations for: constraints, EMMI needs, boundaries, and

installed systems. These considerations affect the accomplishment of systems integration

throughout all the systems engineering phases.

2. System Interfaces

Interfaces cross boundaries to connect components or subsystems together. They

are essential for the conducting exchanges of EMMI between objects. Maier and Rechtin

(2009, 10) state, “The architect’s greatest concern and leverage are still, and should be,

with the systems’ connections and interfaces.”

As part of the development phases, requirements analysis traceability of all

designed and legacy interfaces contributes to accurate and well-defined systems

architecture models. Any legacy requirements considered for reuse or pull through should

require analysis to determine applicability to the newly proposed IOE. It is risky to

assume any legacy requirements are applicable as written to the new IOE. Unfortunately,

the design agent does not expend enough resources to fully understand all interfaces;

issues are discovered after the design solution is complete, which results in costly

redesign efforts. New objects that interface with legacy objects must support integration.

 13

Langford (2012, 33) states that, “objects that interact via one or more interfaces and

create a binding relation with other objects are integrated.”

3. Impacts to Systems Integration

During physical systems integration efforts, the following events occur;

combining objects into assemblies, subsystems and systems; individual object form, fit,

and functional testing and, verification of interfaces between objects. This is an

inconvenient time to discover physical incompatibilities between two or more objects.

These incompatibilities are present during development, but usually not discovered until

the conduct of SI. As a result, an SI failure occurs and the system requires redesign to

address the defects. The design team must re-formulate the solution space to account for

this issue, redesign objects to address the incompatibilities, and attempt physical systems

integration a second time. Cost and schedule impacts are expected.

4. Summary of System Boundaries and Interfaces

For a newly designed system of interest (SOI) within a system of systems (SOS)

architecture, boundaries and interfaces are a great leverage and a great concern (Maier

and Rechtin 2009). Other systems within the SOS that exchange EMMI with the SOI will

impose constraints on that system. It is crucial to the design team to not only understand

the SOI’s customer needs and constraints but also that of any and all interfacing systems

within the SOS (INCOSE 2010). Failure to consider and analyze the SOI boundaries and

interfaces to other systems can result in integration failures and post development

redesigning to address broken interfaces.

D. REQUIREMENTS DEVELOPMENT

1. Introduction

Requirements are the building blocks for designing a system. Completion of a

customer/stakeholder/user needs analysis yields needs in the form a Request for Proposal

(RFP). This document gives a general view of customer needs to the prospective design

agent or contractor. Subsequent to awarding the contract, meetings are held between the

design agent and the customer to further understand the stated needs from the RFP and to

 14

elicit any other needs, being careful to eliminate any “wants” stated by the customer as

being just that or potentially as a “need” that was mistakenly communicated as a “want”

(Langford 2015).

Requirements will also come from the needs of the users or warfighter, obtained

from conducting a user needs analysis. These users will operate and maintain the system

or equipment in the field or the intended operational environment. Analysis of all

customer and user needs will generate the highest set of requirements, the system

requirements capture, and approval by the stakeholders prior to starting any design or

lower level requirements generation. Traditional systems engineering accomplishes this

via pen, paper and sometimes by using COTS software applications not necessarily ideal

for requirements management. However, there are solutions to managing requirements;

model-based systems engineering accomplishes this via models. Grady (2010, 276)

suggests, “All requirements should be derived using models so all requirements should be

traceable to a modeling artifact from which was derived.” It is important to ensure proper

configuration management of all requirements documents. Any inadvertent change to

even just one requirement has as cascading effect to all lower level requirements that

trace to the modified system requirement. After completion of system design, any

proposed system level requirements changes require analysis by all stakeholders. This

analysis must be objective and any decision supported by accurate data.

From the system requirements, all lower level requirements will trace back to one

or more system level requirements and down to individual configured items that meet the

requirement. Application of traceability occurs in either a forward (or top-down)

approach or a backward (or bottoms-up) approach (Figure 4).

 15

Figure 4. System Lifecycle Requirements Traceability. Source: ITABoK
(2016).

2. Importance of Traceability

Failure to implement traceability between the hierarchies of requirements can

create holes in the system design. In other words, the design solution will not address the

entire problem space. Any holes in the requirements will later create holes in the

execution of systems integration testing. SI test derive from the previously written and

decomposed design requirements. Inadequate traceability of any design requirement to

the lowest design documentation, affects the respective test procedure will not account

for that untraced requirement(s). Manually tracing requirements between multiple levels

of design documentation to multiple levels of testing documentation is very difficult to

execute to a high degree of accuracy. Shchupak (2015, 42) states, “Full traceability is

another key feature that is critical for successful systems engineering. The goal is to

ensure that there is clear traceability from stakeholders’ needs to requirements to the

design and to verification and validation.” There are software application tools that make

requirements management executable and an integrated systems architectural framework

can ensure traceability.

 16

3. Importance of Using a Requirements Management Tool

Requirements Management tools such as Dynamic Object-Oriented Requirements

System (DOORS) provides functionality for requirements documentation, generation for

development and testing, revision control, traceability support, configuration

management, and customer approval.

In the requirements-centric approach, child requirements derive directly
from parent requirements, thereby eliminating the possibility that a lower
level document has parentless requirements (orphans). This approach
would provide better visibility into whether a parent requirement has all of
the child requirements that are needed to support eventual satisfaction of
the parent requirement. (Perz 2006, 83)

4. Full Coverage of Requirements Testing for Risk Mitigation

All well written requirements are capable of being tested. Eliminating holes in

requirements traceability reduces integration test failures and ensures collectively that all

requirements documents provide 100% testing coverage.

SI testing must execute each design requirement at least once, and at the

appropriate level. Testing of software requirements happens as part of the software

configured item lower level testing, unless that software requirements traces to a higher-

level systems requirement and allocated as part of the system level testing. There are,

however, risks involved with delaying and allocating any requirements testing of a lower

level requirement to a higher test. Any problems discovered later will leave little time for

rework, retest, and result in schedule delays. Mitigating test risk by testing each

requirement at the earliest possible opportunity leaves more time to recover, but since it

might involve duplicate testing could cost more. Some overlap of requirements testing is

expected, and the stakeholders should identify any high-risk requirements that require

testing early and more than once. Model-based Systems Engineering ensures traceability

between requirements and verification steps during test. This relies on models that

capture requirements traceability as shown in Figure 5. Additionally, applying formal

methods language to MBSE ensures specified requirements adhere to predefined

constraints tested during verification and validation testing events.

 17

Figure 5. MBSE Requirements Traceability. Source: Giachetti (2015).

5. Impacts to Systems Integration

From the perspective of interfaces and interactions between objects, requirements

specify the design of interfaces between objects. From the perspective of objects,

hardware and software configured items, requirements documentation specify how CIs

interact via interfaces logically and physically. Requirements documentation also needs

to specify interactions or interfaces among integrated CIs. Having a concise set of system

and lower level requirements will provide a solid baseline set of requirements needed for

test engineer to author the test procedures. Any poorly written or undocumented

requirement will create holes in the test procedures and contribute to unexpected test

failures or assembly issues during integration. Additionally, Giammarco (2016) states, “A

typical requirements statement defines what a system must do, but stops short of defining

how it will be done.” Systems architecture answers the “how” question. Table 1 lists

some benefits to formulating well-written requirements.

 18

Table 1. Benefits of Well-Written Requirements. Source: NASA SEH
(2007).

Benefit Rationale

Establish the basis for
agreement between the
stakeholders and the
developers on what the
product is to do

The complete description of the functions to be performed by the product
specified in the requirements will assist the potential users in determining if
the product specified meets their needs or how the product must be modified
to meet their needs. During system design, requirements are allocated to
subsystems (e.g., hardware, software, and other major components of the
system), people, or processes.

Reduce the
development effort
because less rework is
required to address
poorly written, missing,
and misunderstood
requirements

The Technical Requirements Definition Process activities force the relevant
stakeholders to consider rigorously all of the requirements before design
begins. Careful review of the requirements can reveal omissions,
misunderstandings, and inconsistencies early in the development cycle when
these problems are easier to correct thereby reducing costly redesign,
remanufacture, recoding, and retesting in later life-cycle phases.

Provide a basis for
estimating costs and
schedules

The description of the product to be developed as given in the requirements
is a realistic basis for estimating project costs and can be used to evaluate
bids or price estimates.

Provide a baseline for
validation and
verification

Organizations can develop their validation and verification plans much more
productively from a good requirements document. Both system and
subsystem test plans and procedures are generated from the requirements. As
part of the development, the requirements document provides a baseline
against which compliance can be measured. The requirements are also used
to provide the stakeholders with a basis for acceptance of the system.

Facilitate transfer The requirements make it easier to transfer the product to new users or new
machines. Stakeholders thus find it easier to transfer the product to other
parts of their organization, and developers find it easier to transfer it to new
stakeholders or reuse it.

Serve as a basis for
enhancement

The requirements serve as a basis for later enhancement or alteration of the
finished product.

6. Summary of Requirements Development

Requirements traceability, when implemented correctly, can ensure all

stakeholders needs trace through the system hierarchy to each respective: system,

subsystem, assembly, and object solutions.

 19

Requirements definition challenge is compounded by the fact that
development programs predominantly involve upgrades of existing
systems. Even truly new systems have to interoperate with existing or
“legacy” systems. Legacy requirements may be incomplete, ambiguous,
out-of-date, in conflict with other requirements, or un-testable. Similarly,
legacy architectures may not be sufficiently developed to support
requirements or interface analysis. (Hoff 2009, 2)

Creating a hierarchy of requirements with clear parent-child relationships
would support efforts to verify a designed solution satisfies its
requirements and eventually support design verification activities. (Perz
2006, 76)

E. SYSTEMS INTEGRATION TEST DEVELOPMENT

1. Introduction to Testing Development

The testing of design requirements happen during verification, validation and

systems integration testing procedures. In a traditional systems engineering (SE) process,

these procedures are conducted during physical systems integration, a bottoms-up

approach. Ideally, the conduct of these procedures can be started during the SE

development phases via virtual or simulation testing or through an iterative process

model such as Agile. Requirements development, traceability and overall change

management must be transparent to the testing engineers. This testing process will

validate each design requirement; each requirement is also validated (Grady 2010, 277).

2. The Connection between Requirements Traceability and Testing
Development

In addition to implementing requirements traceability, configuration control

ensures all designers and testers are working from the same version of a requirements

document. Ineffective configuration control of requirements documents can create

disparities between design requirements documentation and the requirements testing

procedures. It is crucial that designers and testers are using the appropriate versions of his

or her respective documentation. Involvement of both the designers and testers are

necessary when making any requirements changes after SI testing has commenced.

Test procedure generation and modifications should possess adequate agility to

respond to rapid changes throughout early process phases. Hoff’s statement alludes to

 20

this need, systems requirements development should be an iterative process (2009, 23)

and effective iterative communication between user and developers is required to

successfully evolve a complete set of system requirements (2009, 64).

In most cases, systems being acquired through the government's
acquisition process are not complete, stand-alone entities. The newly
acquired system will almost always need to fit into a larger operational
architecture of existing systems and/or operate with systems that are being
separately acquired. To be completely effective and suitable for
operational use, the newly acquired system must interface correctly with
the other systems that are a part of the final operational architecture.
Integration testing, or SOS testing, verifies that the building blocks of a
system will effectively interact and that the system as a whole will
effectively and suitably accomplish its mission. (MITRE 2016)

In addition to the scenario described in the fore mentioned quote, Chapter IV lists

other scenarios that require careful attention to system integration, some of which will

drive requirements changes throughout development and beyond. External imposed on

the stakeholders can force the designers to revisit and change existing requirements or

write additional requirements in response to these factors. Encountering these scenarios

requires the design team to communicate any requirements changes to the integration

testing team as changes will influence what is tested and how.

3. Summary of Systems Integration Test Development

It is important for the design team to have a seamless traceability of requirements

from the system level requirements; translated from stakeholder needs, to the lowest level

of component or object level design. Testing conducted subsequent to design and

executed in accordance with the allocated requirements for each object and groups of

objects that create assemblies, subsystems and systems. Perz (2006, 81) explains the

connection between traceability and testing, “clear traceability of lower-level

requirements up to system-level requirements supports final validation, verification, and

testing.”

 21

III. IMPROVING SYSTEMS INTEGRATION THROUGH
ADVANCED SOLUTIONS

A. EMPLOYING A SYSTEMS ARCHITECTURE FRAMEWORK

1. Systems Architecture Defined

Giammarco (2015, 23) states, systems architecture (SA) is the, “art and science of

creating and building systems too complex to be treated by engineering analysis alone.

That part of system development most concerned with scoping, structuring, and

certification. It is a combination of the principles of both systems and of architecting.”

Inadequate systems architecture has caused systems integration failures as observed in

the architecture used to design the DDG-1000 and Hubble Space Telescope. Langford

states (2012, 276), “Architecture describes what the system does and generally how it

does it.” The act of designing a system, “brings order to misleading, ill-fitting and

confounding data; at-odds opinions; differing values; and problematic convergence;

architecture is a tool that allows us to tame complexity” (Langford 2012, 277).

2. Systems Architecture Ties to Systems Engineering

Systems engineering formulates a solution to a problem space; systems

architecture improves the clarity of a problem space.

In the process of accomplishing the problem space modeling work we will
have developed insight into three things of interest: (1) knowledge of the
entities of which the system should consist, (2) knowledge of the
relationships (interfaces) between these entities, (3) knowledge of the
requirements that apply to the entities and the relationships that should
flow into specifications for the former and interface documents for the
latter. (Grady 2010, 222)

The result should be a systems design that satisfies all aspects of the problem

space. For some system problems, obtaining a feasible solution via systems engineering

is adequate. For complex systems with complex problems, there is a necessary pairing of

systems architecture with systems engineering. This pairing provides the stakeholders the

ability to model the system via frameworks views. These framework views assist the

architect and the engineering team to ensure proper and complete form of the system

 22

from the preceding functions. SA viewpoints, as defined by the DOD Architecture

Framework (DODAF) and depicted in Figure 6, are vital to establishing requirements that

define, structure, function and relationships or interactions between objects (SEBOK

2016). “Architects select the viewpoints and models to develop based on the purpose of

their architecture” (Pilcher 2015, 15). While the current version of the DODAF includes

8 Viewpoints, this thesis discusses the four primary viewpoints and provides an example

for each below.

Figure 6. Systems Architecture Views. Source DOD (2015b).

a. Capability Viewpoints

These views depict the capability requirements; specifically they answer the

questions, “Who or what receives it and when it is received by what.” An example of

one of these views is CV-2: Capability Taxonomy, which depicts a system’s capabilities

in a hierarchical timeline.

 23

b. Operational Viewpoints

These views capture the operational scenario requirements and activities that

support the capabilities and answers the questions of, “how, when and where?” An

example of one of these views is the OV-2, Operational Resource Flow Description. This

view depicts resources exchanges that occur between operational activities.

c. Systems Viewpoints

The systems views depict the interconnections within a system and between two

or more systems. These views support the operational and capability requirements. An

example of one these views is the SV-1, Systems Interface Description which depicts a

system, its objects, and the interfaces those objects share.

d. Services Viewpoints

These views capture the exchanges between performers, activities and services

that support the operational and capabilities functions. An example of one these views are

the SvcV-2, Services Resource Flow Description, which depicts resource exchanges that

occur between services. There are 51 models organized into eight categories of

viewpoints. “The meaning of the different views, simply stated, is the operational views

describes what a system does, the systems view describes how a system performs, and the

technical view comprises applicable technical standards that constrain the solution” (Hoff

2009, 30). Tables 2–5 contain four of the eight for mentioned viewpoints and associated

models with descriptions.

3. Contributions to Systems Integration

Systems are more complex than ever, and it is essential to implement systems

architecture within the systems engineering process. System architecture facilitates a full

understanding of all objects, the manner in which they interact and behaviors performed.

Blanchard and Fabrycky (2012, 92) state the importance of architecture and interactions,

“Architecture describes how various requirements for the system interact.” SI is

concerned with how objects interact with objects via interfaces. Figure 6 depicts DODAF

architectural viewpoints. Collectively, these viewpoints “facilitate planning for

 24

integration…predicts how each object will interoperate with the system (as a whole)”

(Langford 2014, 173). No one model depicts the entire system but a suite of models is

used to depict various aspects of a system and is used together to depict the entire system.

Giammarco (2010, 523) states, “Architecture frameworks are employed to create,

communicate consistent architecture descriptions.”

These views are vital in establishing requirements and are inputs to those
responsible for defining the functions, structures, and relationships needed
to achieve the desired product or service” (SEBOK 2016). When a design
agent employs a set of views and associated models, it creates an
integrated architecture one that should depict the system design as a
whole. “Consequently, system design and architecture are profoundly
important to integration. (Langford 2012, 174).

These architectural views, when modeled correctly, gives the design team a low

fidelity overall systems model or system of systems model that depicts all objects that

will go through physical systems integration. These architectural views serve as a

roadmap for the design team during system development. When an architectural view

depicts EMMI exchanges between, for example, objects A and B, the proposed design

interface between these two objects, both objects must support that interface and its

requirements. When the design team understands this interface from an architectural

standpoint, it guides the documentation authors to ensure traceable and interoperable

requirements that support the EMMI needs of objects A and B. The Vitech CORE

Systems Architecture schema in Figure 7 displays the interface and relationships among

design elements.

 25

Figure 7. CORE’s DODAF Version 2 Schema. Source: Vitech (2016).

4. Summary of Systems Architecture

Systems architecture (SA) describes what a system does and how it will do it and

it also addresses systems complexity (Langford, 2012). SA gives the design team insight

into entities, relationships and requirements that contributes toward specification and

interface documents (Grady 2010). Requirements specify and document the system’s

design; design and architecture are very important to integration (Langford 2012).

Systems architecting is part of the systems engineering design process that
results in the partitioning of a system into components, the defining of
interfaces among those components, and the processes that govern their
change over time. This is a critical step in the acquisition of a system since
it sets a framework and provides a roadmap for all the work that follows.
More important is that systems architecting supports the holistic
perspective of systems engineering and combines the art of balancing
stakeholder concerns with the rigorous use of engineering analysis to
handle complex problems that require a system solution. (Robinson 2013,
28)

 26

B. UTILIZING MODEL-BASED SYSTEMS ENGINEERING

1. Model-Based Systems Engineering Explained

Complex systems with complex interfaces, functions and behaviors are difficult if

not almost impossible to capture, trace, and analyze via document or paper centric SE

manner. MBSE provides a better alternative to managing complex systems designs.

Shchupak (2015, 18) clarifies, “MBSE does this by providing clear traceability between

the products associated with each process.” This traceability is captured in Figure 8;

starting on the left side requirements trace to the operational, functional, and

constructional or physical visions or views. Traditional SE modeling does not trace to

these views as MBSE “enhances specification and design quality, reuse of system

specification and design artifacts, and communications among the development team.”

Shchupak then quotes Friedenthal, Moore, and Steiner (2012, 15), “This focus on higher

quality, reduction of rework, and improved communications, as well as the process

driven approach, makes MBSE a powerful tool to support systems engineering

management.”

Figure 8. Requirements Inputs to Model-Based Systems Engineering.
Source: OMG (2016).

 27

2. Contributions to Systems Integration

Grady (2010, 55–56) writes, “There is much we do not understand about

integration as it occurs inside the human mind.” Later, he discusses “Unexposed

integration” issues. Grady (2010, 57) states, “Models can help us identify unexposed

integration issues, and conscious thought about how the system will be used from both an

operational and maintenance perspective within the context of these models will be

helpful.” Pilcher (2015, 22) explains further emphasizes the importance of models,

“Architects use models as tools to communicate the system requirements to the

stakeholders for approval, verification, and validation of the system prior to its

implementation. Iterative reviews of the models with the appropriate stakeholders

provide for early discovery and correction of design issues.” Previously, this thesis

introduced what systems architecture was and what contributions it made to systems

engineering and to systems integration. Development and completion of the SA view

models precedes any selection of forms, which is an object that satisfies a function and

physical architecture. This is the essence of MBSE and one of the reasons why its

application during SE developmental is garnering more attention by SE professionals.

Another benefit to MBSE is its use to investigate design decisions without the need to

commit to physical forms; “experimental investigation using a model yields design or

operational decisions in less time and at less cost than direct manipulation of the system

itself” (Blanchard and Fabrycky 2012, 172). Traditional models do not provide the same

insight or benefits that MBSE offers. Table 2 provides a list of other MBSE benefits.

 28

Table 2. Benefits of Using Model-Based Systems Engineering. Source:
INCOSE UK (2016).

Benefit Explanation

Reduced risk

• Improved cost estimates
• Early and on-going requirements validation through inspection, and

design verification through the use of simulation and automatic
verification

• Improved systems assurance
• Fewer errors during integration and testing

Improved

communications

• With project stakeholders
• Between engineering disciplines
• Across spoken language barriers

Improved quality

• Improved requirements specification and allocation
to subsystems

• Early identification of requirements issues
• More rigorous requirements traceability
• Enhanced system design integrity
• Consistent documentation, both within and across

projects

Increased

productivity

• Improved impact analysis of requirements / design
changes

• Improved interaction across a multi-discipline team
• Reuse of existing models to support design and

technology evolution
• Automated generation of documentation
• Common definitions means changes are made in fewer

places

Expounding on some of the benefits to utilizing MBSE, reduced risk means fewer

errors during integration and testing. By utilizing MBSE, analysis of interactions between

objects provide early detection of design errors that affect integration. Improved quality

provides for, early identification of requirements issues. MBSE software tools are useful

in testing requirements implementation within various architectural models such as

functional flow block diagrams.

3. Summary of Model-Based Systems Engineering

Models can help us identify unexposed integration issues, and conscious
thought about how the system will be used from both an operational and
maintenance perspective within the context of these models will be
helpful. (Grady 2010, 57).

 29

Grady refers to models generated by MBSE software application tools. Lastly, the

modeling efforts are continuous throughout systems engineering process. Maier and

Rechtin (2009, 12) assert, “From a modeling perspective, there is no stopping. Rather

modeling is seen to progress and evolve, continually solving problems from beginning of

a system’s acquisition to its final retirement.” Continuous modeling throughout

development, equips the design team with a way to implement, test, and observe system

responses to a proposed change usually driven by external factors, without the need to

implement the change to any physical form.

MBSE provides early and detailed insight into object functionality and

interactions with other objects; even for objects located in different systems. Traditional

SE cannot replicate this level of insight and traceability using a paper-based method.

In the process of accomplishing the problem space modeling work we will
have developed insight into three things of interest: (1) knowledge of the
entities of which the system should consist, (2) knowledge of the
relationships (interfaces) between these entities, (3) knowledge of the
requirements that apply to the entities and the relationships that should
flow into specifications for the former and interface documents for the
latter. (Grady 2010, 222)

Again, the main concern of systems integration is at the interfaces; object

interfaces within the same system and object interfaces between different systems.

 30

THIS PAGE INTENTIONALLY LEFT BLANK

 31

IV. SOLUTION FOR ADDRESSING COMPLEX SYSTEMS
INTEGRATION PROJECTS

A. UNIQUE SYSTEMS INTEGRATION CIRCUMSTANCES THAT CAN
BENEFIT FROM THE UTILIZATION OF ADVANCED SOLUTIONS:

There are certain systems engineering projects and scenarios that will warrant

additional considerations by the stakeholders to ensure successful systems integration.

The scenarios present challenges, when not addressed will produce integration risks that

can lead to failures.

1. Integration of New and Complex System Solutions with Legacy
Systems

Due to funding constraints, DOD systems are expected to remain in service for a

longer than the initially planned life span. The life span of a system is referred to as the

end of life (EOL); it is the duration between the times in which the first system is

implemented, expressed as the initial operational capability (IOC) until the last system is

removed from service, expressed as final operating capability (FOC). When extending a

DOD systems’ EOL, it creates obsolescence issues with the equipment used in the

system.

Part of the development efforts for the system, logistics calculations determine

reliability based on availability, mean time between failures (MTBF), and the customer’s

need for overall sustainment support period for the equipment. The sustainment period

should be the same duration as the EOL. These calculations determine the procurement

quantities of the equipment to keep the system running throughout the established EOL

duration. These quantities include equipment actively sustained in the IOE and any spares

to keep the system running should any sustained equipment fail.

The systems integration challenge occurs when the DOD program manager (PM)

either proactively or reactively refresh system, within a SOS or system components

within a system, in response to emergent obsolescence issues. Additional budget

constraints prevent the PM from replacing an entire system but only parts of the system

 32

or possibly some systems from a SOS. The integration challenges are the need to ensure

requirements traceability, component interoperability and compatibility, component and

interface function, and form between the legacy components and new components. It is

imperative for advanced systems design solutions be utilized to properly architect the

new and modified interfaces between the newly designed objects and the unchanged

legacy objects are interoperable. This issue affects DOD systems for the DDG-1000

Legacy Missile System and Shipboard Data System.

2. External Factors that Impact System Requirements and Design

Cyber security threats are real and constantly evolving. As a result, DOD agencies

charged with maintaining the security policies for DOD systems either reactively or

proactively change security policies to protect the sustained systems. When the need

arises to design a new system or refresh a sustained system, cyber security policies and

associated requirements affect the system’s design solution. Some of those security

requirements will conflict with one or more system/subsystem requirements.

Sometimes the augmentation of new or existing yet modified security

requirements or policies are ill timed and happens late in development. Thus, there is a

need for ongoing integration and testing throughout development and into physical

systems integration. Software is constantly subject to pressures of change (Brooks 1987,

3). Today, most of those pressures are from policy changes made external to the design

agent and program manager’s organizations. There also needs to implement and analyze

policy driven requirements changes into the system via modeling prior to implementing

the changes into the physical system. This issue is with the Shipboard Data System

program driven by emergent changes to cyber security technical information guidelines

(STIG) and overarching policies.

3. Summary of Circumstances Requiring Advanced Solutions

There are circumstances that when realized, increases the system’s design

complexity and associated integration efforts. When this happens, risks involving systems

integration become more likely and with far worse consequences to the system. The next

section will explore a solution for addressing integration challenges such as these.

 33

B. USING FORMAL METHODS TO ANALYZE AND DESIGN SYSTEM
INTERFACES

1. What are Formal Methods?

One proposed way to mitigate complex systems integration risks is the application

of formal methods (FM) for solidifying systems architecture models. As defined in a

lecture by Giammarco, a formal method is, “the use of formal notation to represent

system models during program development with the goal of establishing system

correctness via mathematical rigor” (2016). Use of these formal methods facilitates the

need by stakeholders for a quick and more detailed analysis of system design changes

affecting interfaces that can later compromise systems integration. As explained by

Giammarco (2010, 522) formal modeling of systems architecture is necessary, “Using

formal methods, stakeholders can decompose and express architecture data quality

expectations unambiguously, and in a way that is abstract and independent of tool.”

Formal methods utilization is superior to traditional systems engineering paper-based

methods used to evaluate emergent system design changes.

Architecture can be modeled informally using such tools as viewgraphs,
word processing documents, drawing tool diagrams, and unlinked
spreadsheet tables. Because there is no programmed logic linking the data
in and among these tools, opportunities to develop inconsistencies in such
informally modeled architectures exist. Users of the architecture data are
continuously engaged in the manually intensive effort of carefully
coordinating the inevitable changes to the data. Capability to perform
analyses (especially quick ones) is extremely restricted because it takes
time to describe the data for different scenarios and keep the data in
multiple views synchronized. (Giammarco 2010, 523)

2. What is Lifecycle Modeling Language?

Lifecycle Model Language (LML) is a modeling language that is useful to

designers through the systems engineering development lifecycle. There are other

modeling languages such as SYSML, but for the purpose of this research, the LML is the

language of choice. Its simplicity of use derives from use of “everyday language” to

define modeling elements depicted in systems architectural views. LML improves the

effectiveness of MBSE models.

 34

LML takes the principles of MBSE beyond the system development and
production stages into the conceptual, utilization, support and retirement
stages by providing a robust easy to understand ontology that allows one
to model the complex interrelationships not only between system
components but between those components and programmatic artifacts
such as schedules and risk management plans using clear diagrams to
express system information. LML was designed to integrate all lifecycle
disciplines, including program management, systems and design
engineering, as well as test, deployment and maintenance into a single
framework. As a result, LML is a language that can be used throughout
the lifecycle. (LML 2015, 3)

LML utilizes axioms or statements explicitly written and used to derive an

associated predicate logical statement or pattern. There are observable patterns

throughout SE development. Some patterns are desirable and require enforcement such

via modeling language. A desirable pattern is the need for every object or component to

perform at least one function. The associated axiom for this pattern need is, “Every object

shall perform at least one function”. Whereas other patterns observed are undesirable and

detrimental to system development, like child requirement that traces upward to more

than one parent requirement. LML can implement a contra positive axiom to avoid an

undesirable pattern. An axiom that represents this need is, “Every child requirement will

not trace more than one parent requirement”. This step assures that an axiom statement is

unambiguous, and language or tool independent (Giammarco and Rodano 2013, 212).

LML contains Ontologies that “provide a set of defined terms and relationships between

the terms to capture the information that describes the physical, functional, performance,

and programmatic aspects of the system” as shown in Figure 9 (LML 2016). The terms

and relationships have similarities to those shown in Figure 7. SA uses terms for an

“object” and “function” and formal methods uses the terms “performer” and “activity”

respectively.

This researcher believes systems integration can be broken up into the following

elements: interoperability, compatibility, functionality, form, and fit to include system

boundaries. There are predefined pattern groups for interoperability and functionality;

development of other patterns is required.

 35

Figure 9. Class/Relationship Diagram. Source: Rodano and Giammarco
(2013).

3. Phased Approach for Implementation of Formal Methods

There is cost to designing a system utilizing systems engineering principles and a

process model. There is further cost to pairing systems architecture concurrently with

systems engineering. There is also cost associated with the start-up or contracting of

formal methods (FM). There are benefits to conducting formal methods; the extent in

which one chooses to use it will vary. Integration of an SOI into a legacy system of

systems architecture benefits from conducting FM, specifically on those interfaces that lie

between the SOI and the legacy systems. If one prefers more correctness due to

implementing a safety critical SOI, then perhaps all safety critical functions or activities

in addition to interfaces or connections are analyzed using FM. The application of FM

does not assume an all or nothing approach. The level of FM implementation depends on

each SOI and its integration environment and associated challenges. FM establishes

correctness of the architectural models and reduces the risk of redesign during or

subsequent to SI.

 36

4. Contributions to Systems Integration

Formal methods involve the use of patterns to machine or software testing to

verify the correctness or completeness of systems architecture. An architect or engineer

identifies the need for a pattern and develops an axiom statement. The axiom statement is

similar to a requirements statement without the use of the word “shall.” For example,

consider an electrical power system for onboard a submarine that provides power to

mission critical systems that must be available 24 hours day. This power system contains

redundant motor generators; one is always providing downstream electrical power to the

critical systems while the other motor generator is running but not providing downstream

power. Both generators share a common, downstream power-seeking transfer switch

(PSTS) that controls which generator is primary and which is backup, based on user

inputs. Again, these generators supply power to mission critical systems with a

requirement of being supplied power 24 hours per day. This requires consideration when

writing an accurate axiom statement.

The following axioms represent the aforementioned system and enforce a needed

pattern or expected behavior of the PSTS:

If a user provides command input to the PSTS, then the PSTS will open the

primary circuit if and only if power is available from the backup generator and if the

backup circuit is closed.

And

If no power is available from the backup generator then the primary circuit

remains closed and the backup circuit remains open.

The PSTS will verify that power is available from the current backup generator

and the circuit between this generator and the critical system is open. If power is

available, then the PSTS will close the circuit between the backup generator and the

critical system. The old backup becomes the new primary or online generator. Then, the

PSTS will open the new backup circuit. The order of events ensures there are no power

interruptions to the critical system. The logic notation represents the mathematical

version of the axiom; the final step is to test the logical notation using a software

 37

application such as Alloy Analyzer. Auguston (2012, 5) explains this application as, “a

model building tool that helps humans reason about models and construct a more

complete set of assertions, bringing any undocumented or implicit assumptions /

unexpected states that the system may enter to the attention of the modeler.”

 “Formal methods can be used for verification at various stages of the architecture

and design process, checking the realization of the entire system against its specification”

(Berry 2002). “Formal methods can be use for setting and validating architecture model

quality criteria, rather than assuming the criteria will implicitly be met by the systems

engineering process or in the tools used in the architecture development and validation

effort” (Giammarco 2010, 529). Validation and verification occur as part of the physical

systems integration overall efforts.

C. SUMMARY OF FORMAL METHODS

Giammarco and Rodano (2013, 214) further explain the importance of formal

methods usage, “By expressing the characteristics of a good system architecture in a

formal manner, a modeled system architecture can be automatically analyzed quickly and

efficiently to determine whether there are possible issues that would make the system

difficult, or even impossible, to realize.”

Most design errors occur but few are identified early in development; prior to

creating detailed designs. It is at this point of the systems engineering lifecycle that

formal methods can provide significant advantages (Giammarco 2016).

By observing systems integration (SI) testing methodology and areas tested, one

can observe patterns inherent to objects and interfaces. During design efforts, most

objects need to adhere to these patterns. However, it is the one or few objects that are

unique or inadvertently overlooked that will not adhere to the common pattern and will

create integration issues.

 38

THIS PAGE INTENTIONALLY LEFT BLANK

 39

V. SYSTEMS INTEGRATION CASE STUDIES

This chapter focuses on specific instances of SI failures. In some instances, it is

necessary to obscure the specific DOD program or system name to avoid classification

issues.

A. SYSTEMS INTEGRATION CASE STUDIES FOR DOD SYSTEMS

The government and its contractors realized a need to replace the existing legacy

deployed system (referred to as “System #1) used onboard the Ohio Class submarines.

The legacy system architecture contains a pair of network servers with several remote

access laptop clients. This system was facing hardware obsolescence issues and running

unsupportable operating systems on the servers. Design, development, test and

deployment of that system solution took over seven years to complete in support of first

installation or accomplishment of the initial operating capability (IOC) onboard the

submarine’s operating environment. This systems engineer personally witnessed interface

issues discovered during the conduct of physical SI and/or during system implementation

of the IOE.

1. System #1 – Key Stakeholder Left Out of Development

a. Description of Problem

In the case of this program, a key stakeholder, a contractor that owned the legacy

storage space that would host the new and more complex COTS based SOI was not

included as a key stakeholder for the project. The government program manager made the

decision to not conduct a stakeholder analysis and in so doing did not award funding for

this contractor to contribute to development of the design solution, review of the design

disclosure documentation or, at minimum share government-furnished information (GFI)

regarding the legacy system to the design agent of the new system. This decision led to

several challenges and setbacks involving integration and system implementation. One

such challenge involved a lack of insight regarding minor systems architectural

differences among the legacy platforms. That is, some locations receiving this new

 40

system had unique configuration differences not adequately captured on the legacy

drawings. Some legacy locations had rear door and post assemblies whereas others had

rear panel assemblies.

b. Results

During the first instance of implementing the SOI into the IOE, an integration

failure caused inadvertent damage to mission essential legacy System #1 equipment.

Implementation/integration efforts halted for several days while the installation team

conducted a root cause analysis (RCA) to determine the cause of this error. At the RCA

out brief, it was determined that one of the causes of this integration failure was a lack of

involvement by the owner of the legacy systems that would host System #1. As a result

equipment damage, the ship’s operational schedule was affected, and the project

experienced a cost overrun.

c. Proposed Solutions from this Case Study

It is imperative to understand the criticality of performing a stakeholder analysis

as part of SE development, even for legacy systems. This thesis emphasizes the

importance of conducting a stakeholder analysis; this should be an iterative process

conducted throughout SE development. Generate a list of stakeholders and analyze that

list for potential impacts to the problem space and the associated design solution.

Streamlining the analysis or exclusion of stakeholders to control cost likely leads to “a

failure to integrate” (Langford 2012). Any system redesign caused by an SI failure

negates some if not all cost savings expected from streamlining stakeholder analysis to

include the exclusion of stakeholders.

2. System #2 – Reduced Stakeholder Involvement and Lack of Legacy
Systems Requirements Analysis

a. Description of Problem

Hardware obsolescence drove the need to develop new safety critical system

(System #2) to replace an existing legacy system. These are the programmatic decisions:

 41

• Pursue an aggressive project schedule that posed risk to the program. As

lectured by Dr. Langford (2015), “If you start a project with your back

against the wall then you will fail.”

• Control project costs by involving the fewest number of stakeholders

possible. The customer made a poor decision to minimize development

costs by streamlining the list of involved stakeholder.

• A selection of COTS hardware for replacing obsolete hardware; lack of

traceability between legacy requirements to the new COTS hardware

b. Results

There was a lack of requirements traceability and allocation between legacy

hardware designs to the new COTS hardware selection criteria, which included

environmental qualification testing requirements. Allocation of environmental test

requirements to the COTS components and environmental testing did not occur. This

resulted in component redesign and subsequent regression testing, which affected the

project schedule and cost. The design agent did not accurately capture legacy problem

space and incorporate into the new system requirements that drove design, and the

implemented design violated critical safety requirements. Exclusion of the safety range

stakeholders resulted in unallocated safety critical requirements into the system design.

Due to the criticality of this system, SI failure mitigation was via a system redesign and

subsequent SI regression testing.

c. Proposed Solutions from this Research

The results of the case study lead to recommending the conduct of stakeholder

and requirements analyses during system development. Pulling through legacy

requirements into a new system design involves risks. Risk mitigation includes legacy

stakeholder involvement and requirements analysis and verifying traceability and

interoperability between legacy and new objects. Eliminating the execution of or

minimizing the efforts of these SE development tasks can likely cost the customer more

money to redesign the system failing SI. Stakeholders did not verify interoperability

between legacy and new requirements and legacy and new objects, which share common

 42

interfaces. MBSE utilizes models for depicting and verifying requirements traceability

and formal methods patterns have the capability to enforce interoperability between

objects.

3. System #3 – Failure to Analyze Software Interfaces and Behaviors

a. Description of Problem

 Direction was given to several government contractors to utilize an existing and

sustained COTS-based system (System #3) to host two new contractor-developed

software applications and additional COTS software items required to support these

developed applications. The prime contractor and the subcontractors for each new

application utilized a paper-based approach to systems design. The customer directed

utilization of an SE Waterfall process model. These new software applications

experienced interoperability issues during early software integration testing of the

operating system (OS) image.

b. Results

Testers observed interoperability issues during early software integration testing.

Ultimately, this issue drove changes to the operating system OS image and a subsequent

image rebuild and regression testing to verify absence of the interoperability issues. This

impacted the project schedule; one that was too aggressive to accommodate any delays.

Additionally, emergent security requirements imposed on the system drove

requirements changes and a subsequent redesign of the software and system aspects to

address the new security requirements.

c. Proposed Solutions from this Research

Utilizing MBSE would empower the design team to model any new or modified

system interfaces and software behaviors between the legacy objects and the new objects.

One way to accomplish is imposing FM constraint patterns to the models impacted by the

requirements changes. In response to those changes, the design agent observes the

behavioral changes. This model testing gives the design agent the flexibility to implement

 43

various alternatives to implementing such a requirements change and make a decision on

which implantation to execute prior to committing to a redesign physical hardware or

software solution.

4. Other Integration Issues

a. Description of Problem

Functional circuit diagrams, interconnection drawings depict internal and external

interfaces and the show exchanges of EMMI between systems, subsystems and

components. During the development of various DOD systems not previously mentioned,

drawing development execution was via traditional systems engineering document-based

methods; no modeling application tools utilized to verify and test the functions and

interconnections/interfaces depicted in these drawings. As a result, system installers and

users discovered errors during implementation and sustainment the new system. Some of

the following integration failures observed were due to incorrect spatial constraints.

• missing cables

• incorrect pinning of a cable assembly plug/connector

• missing signals routed by a particular cable or multiple signals on multiple

cables

• incorrect terminal board and/or terminal board pins called out for a connector

• incorrect cable length

• incorrect landing points called out for cable lug(s) and/or connector

• hex bolts bottoming out before a specified torque value is reached

• a form that met all spatial fit constraints for some equipment configurations

but not for all configurations

b. Results

Most errors encountered are discovered subsequent to production and

manufacturing efforts have either started or been completed. Unfortunately, these

resulted in corrections to the drawings, redesign, and rework to the affected hardware.

 44

c. Proposed Solutions from this Research

Expose spatial constraint errors during functional and physical modeling

development and testing. Once these models successfully complete testing, drafters

utilize the model’s output data for drawing creation. In addition, formulate and apply

formal methods constraint patterns that specifically address spatial shortfalls.

B. NON-DOD INTEGRATION FAILURE CASE STUDIES

Integration failures also occur in non-DOD systems engineering projects. The

following case studies document two different integration issues that are detectible during

system development.

1. FBI Virtual Case File Project

Hoff (2009, 55) states this case study as, “An example of failure to engage

stakeholders … a three year development contract to upgrade the Federal Bureau of

Investigation’s (FBI’s) IT infrastructure and to design what was called the ‘Virtual Case

File’ which would allow the FBI to move from its antiquated paper-based investigation

and records to computer-based investigation and records.” Hoff (2009, 56) goes onto

state, “It appeared that among other issues the FBI used contractors as FBI stakeholders,

not agency stakeholders themselves. The system developer in turn may not have

exercised due diligence in validating the requirements. The program, nominally a $170M

program, was cancelled and begun over with a new development contractor, eventually

costing an additional two times the original program cost.”

This thesis previously documents that users are stakeholders, stakeholders have

needs, each need translates to a system requirement, and each system requirement has

many lower level design requirements. Integration fails when the user’s needs are not

reflective in the system design. Stakeholder analysis, constant developmental

involvement increases the likelihood the implemented system design integrates

successfully.

 45

2. Ariane 5

The Ariane 5 was a launch vehicle developed for the European Space Agency for

the Solar Terrestrial Science Program. Dennis Buede (2006, 368) provides the following

facts. On June 4, 1996, Arianne 5 veered off course and disintegrated 37 seconds after

launch. The root cause was traced to a concurrent failure of both inertial reference

systems specifically; the software caused this concurrent failure when it converted a 64-

bit floating-point number to a 16-bit signed integer value. The systems architecture

lacked functional redundancy. Specifically, the data conversion failed due to the floating-

point value being too large for the 16-bit integer. The SRI processor executed a

shutdown, causing the Arianne 5 to lose its inertial reference point and veer off course.

With the implementation of formal methods patterns for interoperability and

MBSE functional and behavioral modeling, improves the design agent’s ability of

detecting integration issues created during SE development tasks.

C. SUMMARY OF CASE STUDIES AND SYSTEMS INTEGRATION ISSUES

The purpose of Chapter V was to provide examples of systems integration issues

experienced by this author personally within the last eight and half as a DOD employee

stationed at a prime contractor’s site. The examples provided collectively infer the need

for additional rigor in system integration activities during the system’s design efforts to

increase the likelihood of physical systems integration and overall systems engineering

process success and do so without the need for system redesign.

 46

THIS PAGE INTENTIONALLY LEFT BLANK

 47

VI. RECOMMENDATIONS AND CONCLUSION

A. RECOMMENDATIONS

1. Thorough Stakeholder Analysis Reduces Design Rework During
Systems Integration

Specifically this research explored the importance of conducting a thorough

stakeholder needs analysis. Stakeholder needs drive system level requirements

generation. Each identified stakeholder can possess one or many needs just as each

overlooked stakeholder has one or many needs.

Identification of each need and translation to a system level requirement

contributes to a complete picture of the problem space and a more complete design

solution. Requirements traceability starts with a stakeholder need and ends with one or

many design requirements for the same object; many objects comprise systems

architecture. Requirements statements are the building blocks to the system design

solution that is integrated, implemented, and sustainable.

Do not assume any cost savings associated with attempting to cut funding or

shortcut processes from the stakeholder needs analysis. Insufficient stakeholder analysis

increases the risk of a partial design solution that becomes evident during systems

integration or implementation into the IOE. Missing a need or a stakeholder with needs,

affects the overall system design. Integration failures can occur when a system design

fails to implement environmental and safety requirements derived from a stakeholder

need. Executing a stakeholder analysis improves the overall design solution and

physical integration efforts.

2. Requirements Traceability Improves Translation of Stakeholder
Needs to System Requirements to System Design

Successful execution of a stakeholder needs analysis and translation into system

requirements does not ensure a full design solution makes it to integration. Upward and

downward requirements traceability can ensure that each lower requirement accounts for;

each eventually takes on one or more forms. These forms take on the aspect of software

 48

and/or hardware objects tested during systems integration. The test engineers will use the

requirements that satisfy a form, to write test plans executed during integration. An ill-

conceived requirements management and traceability paradigm can yield the same results

as overlooking a stakeholder of need and again producing a partial design solution. “In

the systems engineering world, poor requirements almost always lead to major schedule,

cost, and performance problems downstream” (Eisner 2008, 203).

 A disciplined approach to requirements traceability and configuration

management improves the overall system design solution and the testing of that design

depends on it. Utilizing systems architecture and formal methods can further assist in

requirements modeling and testing and potentially provides the design agent with a more

complete system for executing simulations prior to committing to any forms. This

provides the design agent early detection of interoperability issues among software

applications. Early detection of issues improves SI.

3. Utilization of a Systems Architecture Framework Improves Systems
Integration for Complex Systems

Systems architecture via model-based systems engineering (MBSE) is required

for integrating new system solutions into a legacy platform.

Any U.S. Navy warfare system being considered for development or
improvement must be integrated into existing architectures, whether or not
those architectures are well documented. So, to some degree architecture
is imposed on a proposed system long before a solution, i.e., design, is
conceived. Even for an unprecedented system on an unprecedented
platform, the sailors who man the ship, environmental and navigations
standards, the weapons, the communications networks, and other
interoperating platforms comprise an architecture into which the new
system must fit. If the architecture is undocumented, it is incumbent upon
the system developer to ensure accurate documentation is produced. If the
architecture is documented, the adequacy must be assessed and any
shortfalls addressed. (Hoff 2009, 76)

Finally, Robinson (2013, 28) makes this statement in his concluding remarks,

“systems architecting supports the holistic perspective of systems engineering and

combines the art of balancing stakeholder concerns with the rigorous use of engineering

analysis to handle complex problems that require a system solution.” DOD programs

 49

have proven increasingly more complex; this trend continues into the future. Utilizing an

architectural framework provides the design agent with a method of modeling legacy

system interfaces prior to designing new components to integrate into the legacy

platform. Integration failures occur at the interfaces.

4. Implementation of Model-Based Systems Engineering Improves
System Requirements, Design and Integration

MBSE provides a toolset to stakeholders for quantifying design options before

committing to one. Having this capability will prove invaluable when responding to

emergent changes to the system design driven by external influences such as higher

authority directives. Regarding the use of MBSE, Tepper (2010, 17) states, “At the heart

of MBSE is requirements traceability and enhanced communication. It also has the

potential to improve decision making by providing accurate change assessments and by

quantifying design options in terms of cost and risk.” MBSE provides the design agent

with a depiction of the proposed system design and a method for executing simulations

and observing interaction among objects. Understanding behaviors or interactions among

objects, reduces integration failures.

5. Incorporation of Formal Methods Patterns Enforces Systems
Integration in Design Specifications

Formal methods utilization ensures models adhere to its system specification or

requirements. Requirements implementation and structure supports the ability to respond

to impacts from external factors. Giammarco and Rodano (2013, 211) discuss the use of

formal methods to verify systems architecture against its specifications and its use for

verifying connections between components or interfaces between objects. Both of these

actions support successful systems integration. Formal methods alleviate some burden on

the design agent to verify all requirements and constraints. It greatly improves the

accuracy of the specification.

Systems engineers and designers need to utilize formal methods patterns prior to

committing to any design solution forms. Formal methods patterns analyze proposed

form interfaces in detail to facilitate early identification of systems integration risks.

 50

Early risk identification can ensure successful systems integration and testing without the

need for redesigning after the fact. Design agents should consider the use of the following

formal methods patterns for addressing the challenges with integrating new advanced

technology solutions with legacy systems, Activity Performance, Compatibility,

Connections, Fit, Form, Input/output, Interoperability, and Requirements Traceability.

Formal methods enforce functionality of objects and their interactions; successful

integration depends on proper object functionality and interactions.

B. CONCLUSION

Maier and Rechtin (2009, 11) state, “When a system fails to achieve a useful

purpose, it is doomed” or “When it achieves some purpose, but at an unfavorable cost, its

survival is in doubt, but it may survive.” Implementation of all or a subset of the fore

mentioned recommendations improve systems integration success by reducing costly

redesigns and improving the usefulness and survivability of the designed system.

C. OPPORTUNITIES FOR ADDITIONAL RESEARCH

Create a holistic system of systems level DOD architecture framework that

includes considerations for new and legacy systems interfaces for hardware, software and

human interactions.

Create a set of formal methods axioms for analyzing interfaces and behaviors

between a proposed SOI architecture and the hosting legacy systems architectures within

the same system of systems architecture.

Conduct cost estimation for implementing the following solutions such as SA

framework, MBSE, and formal methods,. Compared that cost to the continued use of

systems engineering utilizing legacy methodologies such as document centric

development. Conduct research on the total cost savings of implementing these three

solutions for more than one systems engineering project. Compare the total ownership

and design costs for each alternative.

Conduct research on the feasibility of utilizing model-based systems engineering

and formal methods patterns to test the accuracy of a printed wiring board (PWB)

 51

architecture prior drawing development and production. Look for solutions that

minimize the need to redesign a PWB due to an integration defect.

 52

THIS PAGE INTENTIONALLY LEFT BLANK

53

LIST OF REFERENCES

Auguston, Mikhail. 2012. “A New Approach to System and Software Architecture
Specification Based on Behavior Models.” Faculty and researcher publication,
Naval Postgraduate School. http://calhoun.nps.edu/handle/10945/14782.

Beam, David F. 2015. “Systems Engineering and Integration As A Foundation For
Mission Engineering”. Master’s thesis, Naval Postgraduate School.
http://calhoun.nps.edu/handle/10945/47229.

Berry, D. M. 2011. “Formal Methods: The Very Idea Some Thoughts about Why They
Work When they Work.” Science of Computer Programming, 42.1: 11–27.

Blanchard, Benjamin S., and Wolter J. Fabrycky. 2011. Systems Engineering
and Analysis. Upper Saddle River, NJ: Prentice Hall.

Brooks, F. P. 1987. No Silver Bullet: Essence and Accidents of Software Engineering.
IEEE Computer 20.4: 9–10.

Buede, Dennis M. 2006. “The Engineering Design of Systems”. 2nd edition. Hoboken:
John Wiley & Sons.

Department of Defense (DOD). 2015. DOD Architecture Framework Version 2.02,
Change 1, Volume 2: Architecture Data and Models. Washington, D.C.:
Department of Defense Chief Information Officer.

Eisner, Howard. 2008. Essentials of Project and Systems Engineering Management.
Hoboken, NJ: John Wiley & Sons, Inc.

Engineering.com. 2014. “Model-based Systems Engineering – Beyond Spreadsheets”.
Wasserman. Accessed April 13, 2016. http://www.engineering.com/
DesignSoftware/DesignSoftwareArticles/ArticleID/7352/Model-Based-System-
Engineering--Beyond-Spreadsheets.aspx.

Estafan, Jeff A. Survey of Model-based Systems Engineering (MBSE) Methodologies.
Accessed April 25, 2016. http://www.omgsysml.org/
MBSE_Methodology_Survey_RevB.pdf.

Friedenthal, Sanford, Alan Moore, and Rick Steiner. 2012. Chapter 2: Model-based
Systems Engineering. In A Practical Guide to SysML: The Systems Modeling
Language, 15–27. Waltham, MA: Elsevier Inc.

Giachetti, Ronald E. 2015. “Systems Architecture and Design, DODAF.” In lecture,
Naval Postgraduate School, Monterey, CA, fall quarter.

54

Giammarco, Kristin. 2010. “Formal Methods for Architecture Model Assessment in
Systems Engineering.” Conference on Systems Engineering Research: 522–531.

———. 2012. “Architecture Model-based Interoperability Assessment.” Dissertation,
Naval Postgraduate School. http://calhoun.nps.edu/handle/10945/14781.

———. 2015. “Systems Architecture.” In lecture, Naval Postgraduate School, Monterey,
CA, fall quarter.

———. 2016a. “Formal Methods for Systems Architecting.” In lecture, Naval
Postgraduate School, Monterey, CA, summer quarter.

———. 2016b. In an email message to the author via Mr. Parker on July 20, 2016. Dr.
Giammarco revealed “related performers are connected by a common interface.”

Grady, Jeffrey O. 2010. System Synthesis, Product and Process Design. Boca Raton, FL:
CRC Press.

Hoff, Patrick R. 2009. “Translation of User Needs to System Requirements.” Master’s
thesis, Naval Postgraduate School. http://calhoun.nps.edu/handle/10945/4928.

INCOSE. 2010. Systems Engineering Handbook, a Guide for System Life Cycle
Processes and Activities. Edited by Cecilia Haskins. San Diego, CA: International
Council on Systems Engineering.

INCOSE UK. 2016. Z-Guide, “Z9: What is Model-based Systems Engineering”.
Accessed May 3, 2016. http://incoseonline.org.uk/Program_Files/Publications/
zGuides_9.aspx?CatID=Publications.

IT Architect Body of Knowledge (ITABoK). “Traceability Through the Lifecycle”.
Chitchula. Accessed May 5, 2016. http://iasaglobal.org/itabok/capability-
descriptions/traceability-throughout-the-lifecycle/.

Langford, Gary O. 2012. Engineering Systems Integration, Theory, Metrics, and
Methods. Boca Raton, FL: CRC Press.

———. 2015. “Systems Engineering for Product Development.” In lecture, Naval
Postgraduate School, Monterey, CA, winter quarter.

LML. 2015. Lifecycle Modeling Language Specification. Version 1.1. Accessed May 5,
2016. http://www.lifecyclemodeling.org/specification/.

Maier, Mark W., and Eberhardt Rechtin. 2009. The Art of Systems Architecting. Boca
Raton, FL: CRC Press.

MITRE. 2014. Systems Engineering Guide. The MITRE Corporation.

55

NASA. 2007. Systems Engineering Handbook, Revision 1. Washington, DC, USA:
National Aeronautics and Space Administration (NASA). NASA/SP-2007-6105.

Object Management Group (OMG). 2014. Object Management Group. “MBSE Wiki”
Object Management Group. Accessed April 27, 2016. http://www.omgwiki.org/
MBSE/lib/exe/fetch.php?cache=&media=mbse:alston_asap_high_level_flowb.jpg.

Oravec, Joseph J. 2014. “DDG-1000 Missile Integration: A Case Study” Master’s thesis,
Naval Postgraduate School. http://calhoun.nps.edu/handle/10945/41425.

Perz, Michael. 2006. “Integrating Stakeholder Requirements Across Generations of
Technology” Master’s thesis, Naval Postgraduate School. http://calhoun.nps.edu/
handle/10945/2614.

Pickar, Charles. 2015. “Systems and Project Management.” In lecture, Naval
Postgraduate School, Monterey, CA, summer quarter.

Pilcher, Joanne D. 2015. “Generation of Department of Defense Architecture Framework
(DODAF) Models Using the Monterey Phoenix Behavior Modeling Approach”
Master’s thesis, Naval Postgraduate School. http://calhoun.nps.edu/handle/10945/
47314.

Robinson, Chris. 2013. “Big ‘A’ Systems Architecture from Strategy to design: Systems
Architecting in DOD”. Defense AT&L. March–April 2013.

Rodano, M., and K. Giammarco. 2013. “A Formal Method for Evaluation of a Modeled
System Architecture”. Proceedings of the 2013 Complex Adaptive Systems
(CAS) Conference. Baltimore, MD.

Saunders, Steve. 2011. “Does Model-based Systems Engineering Approach Provide Real
Program Savings? – Lessons Learnt”. Informal Symposium on Model-Based
Systems Engineering DST, Edinburgh, South Australia.
http://www.omgsysml.org/Does_a_MBSE_Approach_Provide_Savings-
Lessons_Learnt-Saunders-200111.pdf (accessed May 2, 2016).

Systems Engineering Body of Knowledge (SEBOK). "Guide to the Systems Engineering
Body of Knowledge (SEBOK)," in BKCASE Editorial Board. 2016. The Guide to
the Systems Engineering Body of Knowledge (SEBOK), v. 1.6. R.D. Adcock
(EIC). Hoboken, NJ: The Trustees of the Stevens Institute of Technology ©2016,
Released 23 March 2016, http://SEBOKwiki.org/w/
index.php?title=Guide_to_the_Systems_Engineering_Body_of_Knowledge_(SEB
OK)&oldid=52176 (accessed 02 May 2016 17:32:09 UTC).

Shchupak, Peter. 2015. “Study of Software Tools to Support Systems Engineering
Management” Master’s thesis, Naval Postgraduate School. http://calhoun.nps.edu/
handle/10945/45942.

56

Tepper, Nadia A. 2010. “Exploring The Use Of Model-Based Systems Engineering
(MBSE) To Develop Systems Architectures in Naval Ship Design” Master’s
thesis, Naval Postgraduate School. http://calhoun.nps.edu/handle/10945/24368.

Vitech Corp. “System Definition Language.” http://www.vitechcorp.com/resources/core/
onlinehelp/desktop/Key_Concepts.htm (accessed March 23, 2016).

http://www.vitechcorp.com/resources/core/onlinehelp/desktop/Key_Concepts.htm
http://www.vitechcorp.com/resources/core/onlinehelp/desktop/Key_Concepts.htm

 57

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	NAVAL
	POSTGRADUATE
	SCHOOL
	I. introduction
	A. background and overview
	B. systems integration overview
	1. Systems Integration Defined
	2. An Example of Systems integration

	C. The systems integration problem
	D. Systems Engineering overview
	1. Systems Engineering Defined
	2. Systems Engineering Development Lifecycle Explained
	3. Typical Phases within a Lifecycle

	E. Systems Integration efforts within the Lifecycle
	1. SI Functions that Occur on the Right Side of the VEE Model
	2. Need for Systems Integration on the Left Side of the VEE Model

	F. Proposed Methodology
	G. Research Questions
	H. Summary of Systems Integration

	II. system development and emphasis on Systems Integration
	A. Introduction
	B. Stakeholder/​customer/​user needs analysis
	1. Who Are the Stakeholders and What are Needs?
	2. Importance of Conducting a Needs Analysis
	3. Impacts to Systems Integration
	4. Summary of Stakeholders and Needs Analysis

	C. System Boundaries and interfaces
	1. Introduction
	2. System Interfaces
	3. Impacts to Systems Integration
	4. Summary of System Boundaries and Interfaces

	D. REQUIREMENTS development
	1. Introduction
	2. Importance of Traceability
	3. Importance of Using a Requirements Management Tool
	4. Full Coverage of Requirements Testing for Risk Mitigation
	5. Impacts to Systems Integration
	6. Summary of Requirements Development

	E. Systems integration test development
	1. Introduction to Testing Development
	2. The Connection between Requirements Traceability and Testing Development
	3. Summary of Systems Integration Test Development

	III. improving systems integration through advanced solutions
	A. employing a Systems Architecture framework
	1. Systems Architecture Defined
	2. Systems Architecture Ties to Systems Engineering
	a. Capability Viewpoints
	b. Operational Viewpoints
	c. Systems Viewpoints
	d. Services Viewpoints

	3. Contributions to Systems Integration
	4. Summary of Systems Architecture

	B. utilizing Model-based systems engineering
	1. Model-Based Systems Engineering Explained
	2. Contributions to Systems Integration
	3. Summary of Model-Based Systems Engineering

	IV. solution for addressing complex systems integration projects
	A. unique systems integration CIRCUMSTANCES that can benefit from the UTILIZATION of advanced solutions:
	1. Integration of New and Complex System Solutions with Legacy Systems
	2. External Factors that Impact System Requirements and Design
	3. Summary of Circumstances Requiring Advanced Solutions

	B. using formal methods to analyze and design system interfaces
	1. What are Formal Methods?
	2. What is Lifecycle Modeling Language?
	3. Phased Approach for Implementation of Formal Methods
	4. Contributions to Systems Integration

	C. Summary of Formal Methods

	V. systems integration case studies
	A. systems integration case studies for DOD systems
	1. System #1 – Key Stakeholder Left Out of Development
	a. Description of Problem
	b. Results
	c. Proposed Solutions from this Case Study

	2. System #2 – Reduced Stakeholder Involvement and Lack of Legacy Systems Requirements Analysis
	a. Description of Problem
	b. Results
	c. Proposed Solutions from this Research

	3. System #3 – Failure to Analyze Software Interfaces and Behaviors
	a. Description of Problem
	b. Results
	c. Proposed Solutions from this Research

	4. Other Integration Issues
	a. Description of Problem
	b. Results
	c. Proposed Solutions from this Research

	B. non-dod integration failure case studies
	1. FBI Virtual Case File Project
	2. Ariane 5

	C. Summary of case studies and systems integration issues

	VI. recommendations and conclusion
	A. Recommendations
	1. Thorough Stakeholder Analysis Reduces Design Rework During Systems Integration
	2. Requirements Traceability Improves Translation of Stakeholder Needs to System Requirements to System Design
	3. Utilization of a Systems Architecture Framework Improves Systems Integration for Complex Systems
	4. Implementation of Model-Based Systems Engineering Improves System Requirements, Design and Integration
	5. Incorporation of Formal Methods Patterns Enforces Systems Integration in Design Specifications

	B. conclusion
	C. Opportunities for Additional Research

	List of References
	initial distribution list

